On the cohomology ring of compact hyperkähler manifolds

نویسنده

  • Tom Oldfield
چکیده

The Chow ring of a smooth algebraic variety V , denoted CH∗(V ), is an analogue of the cohomology ring that is more closely related to the algebraic, rather than topological, aspects of the variety. For a d-dimensional abelian variety A over a field k, let  = Pic(A) be its dual, the variety parameterising principal line bundles on A, and for a ∈  denote the line bundle parameterised by a as La. The Poincaré line bundle L on A × Â is a line bundle satisfying the universal property such that ∀a ∈ Â,La ∼= L|A×{a} and L|{0}× is trivial. The first Chern class of L gives an element of CH(A × Â), which we denote L, that allows us to define the Fourier transform on the Chow group by:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Vanishing theorems for locally conformal hyperkähler manifolds

Let M be a compact locally conformal hyperkähler manifold. We prove a version of Kodaira-Nakano vanishing theorem for M . This is used to show that M admits no holomorphic differential forms, and the cohomology of the structure sheaf H(OM ) vanishes for i > 1. We also prove that the first Betti number of M is 1. This leads to a structure theorem for locally conformally hyperkähler manifolds, de...

متن کامل

Parabolic nef currents on hyperkähler manifolds

LetM be a compact, holomorphically symplectic Kähler manifold, and η a (1,1)-current which is nef (a limit of Kähler forms). Assume that the cohomology class of η is parabolic, that is, its top power vanishes. We prove that all Lelong sets of η are coisotropic. When M is generic, this is used to show that all Lelong numbers of η vanish. We prove that any hyperkähler manifold with Pic(M) = Z has...

متن کامل

Abelianization for hyperkähler quotients

We study an integration theory in circle equivariant cohomology in order to prove a theorem relating the cohomology ring of a hyperkähler quotient to the cohomology ring of the quotient by a maximal abelian subgroup, analogous to a theorem of Martin for symplectic quotients. We discuss applications of this theorem to quiver varieties, and compute as an example the ordinary and equivariant cohom...

متن کامل

Projective bundles over hyperkähler manifolds and stability of Fourier-Mukai transform

Let M be a K3 surface or a 2-dimensional compact torus, B a stable bundle on M , and X the coarse moduli of stable deformations of B. The Fourier-Mukai transform is a functor FM : Db(M)−→Db(X), where Db(M), Db(X) denotes the derived category of coherent sheaves on M , X . Consider a stable bundle B1 on M , and let FM(B1) be the corresponding complex of coherent sheaves onX . AssumeX is compact....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015